Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase.
نویسندگان
چکیده
The opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membranes of mitochondria can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the pore is associated with the dimeric ATP synthase and the oligomycin sensitivity conferral protein (OSCP), a component of the enzyme's peripheral stalk, provides the site at which cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral stalk, extending from near the top of the enzyme's catalytic domain and crossing the membrane domain of the enzyme via two α-helices. We investigated the possible involvement of the subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, lacking the membrane domain of subunit b or the OSCP, respectively, in which the corresponding genes, ATP5F1 and ATP5O, had been disrupted. Both cell lines preserve the characteristic properties of the PTP; therefore, the membrane domain of subunit b does not contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin D. The membrane subunits ATP6, ATP8, and subunit c have been eliminated previously from possible participation in the PTP; thus, the only subunits of ATP synthase that could participate in pore formation are e, f, g, diabetes-associated protein in insulin-sensitive tissues (DAPIT), and the 6.8-kDa proteolipid.
منابع مشابه
Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase.
The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synt...
متن کاملThe INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase.
Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F1-ATPase core domain have been identified, insight into how the nuclear-encoded F1-domain assembles with the membrane-embedded Fo-region is lacking. Here we identified the INA compl...
متن کاملMovements of the e-subunit during catalysis and activation in single membrane-bound H -ATP synthase
F0F1-ATP synthases catalyze proton transport-coupled ATP synthesis in bacteria, chloroplasts, and mitochondria. In these complexes, the e-subunit is involved in the catalytic reaction and the activation of the enzyme. Fluorescencelabeled F0F1 from Escherichia coli was incorporated into liposomes. Single-molecule fluorescence resonance energy transfer (FRET) revealed that the e-subunit rotates s...
متن کاملStalking the mitochondrial ATP synthase: Ina found guilty by association.
M itochondrial oxidative phosphorylation produces the vast bulk of ATP in aerobic cells. The F1FoATPase (or mitochondrial ATP synthase; complex V) is a large multisubunit machine of the mitochondrial inner membrane (Fig 1). ATP is produced by the F1Fo-ATPase by utilizing the proton gradient formed by the electron transport chain. It is comprised of two major structural regions—an F1ATPase matri...
متن کاملOn the structure of the stator of the mitochondrial ATP synthase.
The structure of most of the peripheral stalk, or stator, of the F-ATPase from bovine mitochondria, determined at 2.8 A resolution, contains residues 79-183, 3-123 and 5-70 of subunits b, d and F6, respectively. It consists of a continuous curved alpha-helix about 160 A long in the single b-subunit, augmented by the predominantly alpha-helical d- and F6-subunits. The structure occupies most of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 34 شماره
صفحات -
تاریخ انتشار 2017